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A set of results concerning goodness of approximation and convergence in
norm is given for L» and L, approximation of multivariate functions on hyper-
cubes. Firstly the trigonometric polynomial formed by taking a partial sum of a
multivariate Fourier series and the algebraic polynomials formed either by
taking a partial sum of a multivariate Chebyshev series of the first kind or by
interpolating at a tensor product of Chebyshev polynomial zeros are all shown
to be near-best L. approximations. Secondly the trigonometric and algebraic
polynomials formed by taking, respectively, a partial sum of a multivariate
Fourier series and a partial sum of a multivariate Chebyshev series of the second
kind are both shown to be hear-best L, approximations. In all the cases con-
sidered, the relative distance of a near-best approximation from a corresponding
best approximation is shown to be at most of the order of [T log n, , where #,
(j=1,2,.., N) are the respective degrees of approximation in the N individual
variables. Moreover, convergence in the relevant norm is established for all
the sequences of near-best approximations under consideration, subject to
appropriate restrictions on the function space.

1. INTRODUCTION

If fis an element of a normed linear function space X, and f * is an element
of a subspace Y, then f* is a near-best approximation to f within a relative
distance p (see [1]) if

If=f* <A +plf—=r2i M

where f® is a best approximation in Y to f. In case f* is formed from f by a
projection P of X into Y, then

Wf=f*l=I1f—PAI<U+[PDIf—fB!
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(see [2]). and we have a realization of (1) with

p - P

Thus Pfis near-best within a relative distance | P .

More specifically. a near-best approximation is termed practical if p is
acceptably small (see [3]). and in particular if p -~ 9 then no more than one
decimal place of accuracy is lost in taking £~ in place of fB. In the case of a
projection P. we must show that' P is acceptably small

Practical near-best approximations have been established by projection
methods for univariate approximation in both the ., and L, norms. Suppose
that F, denotes the projection on the partial sum of degree » of the Fourier
series, G, and f, denote the projections on the partial sums of degree n of
the Chebyshev series of first and second kinds. respectively. and 7, denotes
the projection on the polynomial of degree » that interpolates in the zeros
of the Chebyshev polynomial 7, ,(x). Then. for continuous functions. it is
well known (see [2. 4. 5]) that

g N A
G, .~ F,., A, ! ' _SEEI_Z)L ol ()
T sin 1x
and
| i Qi+ D=
EEIEY Y _— 3
Lo o L O T )

And for absolutely integrable functions it has been shown (see [6]) that

F,, :1 AR /\
and

[‘[,, 1. ’\n'l .
Here A, is the classical Lebesgue constant. and y, is derived from the relation

n

Y. o max Yy /(x) . )
T
where
X=X 5
) TH—=30) <)

and {x,| are the zeros of T,.,(x).
The constants A, and y, are known (see [4, 5]) to have asymptotic
behaviours

4

A, — =5 logn = 0O(1) (6)

P
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and
2 .
yn = —logn + O(1), (7)

and both increase so slowly with # that they do not exceed 3 for n up to 20.
It follows that F, . G, , and I, yield practical near-best L., approximations,
and F, and H, yield practical near-best L, approximations.

The convergence in norm of these univariate approximations is discussed
in [1). In the L, norm, converges (as n — oc) of F,f. G, f, and I,,f is well
known if fis Dini-Lipschitz continuous (or alternatively. in the case of F, f
and G, f. continuous and of bounded variation). And in the L; norm,
convergence of F,f and H, f has been established if f is square integrable.

All the above results will now be generalized to multivariate functions on
hypercubes.

2. L, APPROXIMATION BY FOURIER AND CHEBYSHEV SERIES

Let £ denote the projection of a multivariate continuous periodic function
Jof N variables x, , x,...., xy over the hypercube

f\,o = [0, 277]\' == {O /t Xis Xaseeaa Xy RN 27

on the partial sum of orders n, , #, ,.... iy In X, , X, ...., Xy ., respectively, of
its Fourier series expansion. Then it is easily seen that

ny N N
E/ - Z Z s Z C/L-l_];:____'];‘\. ez(/.lul~ etk eN) )
/.'1:—-)1l ky=-n, ha==ny
where
L~ r sk - =k un)
C’-p’-‘zn-n’-‘:\' - _27) J o fluy,.ouy)e NN duy - duy
) TN
It follows that
BN < < (g ) ( )
() [ fnmiu) § e Y et ity
VLT By
KN Iy=—n, ha=—rhy ;% dul dll:\;

1 A\W Uiy by et hon
B (2 ) J » Flxy =t en Xy 1Y) z e af NI dey - dty
w .ny

N d

LN g o
: (7);) ‘W floy 4+ nonxy o) > e RUodty e dry
=~ CHAN =—n

J=1 L =—

i
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Thus

. I S . N Sin l, — ’.1)' t ;
Ff — (T) | fy ey =10 ] sn, 9 dty - dty . (%)
2rlJ g o !
Taking norms and using the definition (2) of the Lebesgue constant A, , we
obtain

Ff‘r ‘(‘:li 'f P 1_[ An - (9)

)=l

The bound (9) is clearly attained (compare the univariate case) by taking f
arbitrarily close to the function

flxy .. x,) - sgn f[' NSL(SZ%{\—,E)\—} i (10)
Hence
VE = Ay . n,..... y). (11)
where
L= TTA ~ () TTog (12)
-1 T i=1

from (6). It follows from Section | above that the Fourier partial sum Ff
is a near-best L, approximation within a relative distance A of the order of

ITlogn,.

A similar result may be obtained for the Chebyshev series expansion of a
nonperiodic function as follows. If g(x; . x...... xy) 18 continuous on the
hypercube

then the related function
f(8,.0,.....8y) == g(cos 0, , cos 0, ..., cos 6.) (13)
is continuous and periodic on 5% Hence, from (9) above,
CEf o sV f o Alny kg .0y (14)

This bound is attained. because the function (10) is an even periodic function
of the form (13) with g arbitrarily close to a continuous function. Since f is
eveninf, . 0, ...., 0 . it follows that Ff only has terms in cos k8, - cos k.8, -~
cos k0~ . But the Chebyshev polynomial Tkj(.\’_,-) of the first kind satisfies

T.(x;) = cos k;8;, where x, == cos 4, .



NEAR-BEST APPROXIMATION 353

and hence
Ff = Gg, (15)

where G denotes the projection on the partial sum of degrees n, ,..., 7y in
Xy ,..., Xy Of the Chebyshev series expansion of the first kind.
Since the bound (14) is attained, it follows from (11), (13), (14), and (15)
that
G = Fl. = A(ny, ny,..., 0y).

Thus the Chebyshev series partial sum is also a near-best L, approximation
within a relative distance A(#, ,..., ny), given by (12), of the order of [ log n; .

From a practical point of view these results are comparable with those for
univariate functions (N = 1) for modest dimensions of variables and degrees
of polynemials. For example, /1 is less than 9 (a loss of at most one significant
figure) for

N=2 and n, = ny <3 50,

N=3 and Hy = Ry == Ny < 0,
5

A

N =4 and Hy = "t =Ny

If a relative distance /1 of 99 is acceptable, which corresponds to a loss of at
most two singificant figures from the best approximation, then this is
achieved for

N =4 and ny, = = n, <100,
N=5 and ny = = n; <20,
N=6 and = =ng < 8.

Of course, the comparison with the univariate case is not so favourable for
larger numbers of variables and higher degrees. Specifically, if n, = - =
ny = n, say, so that there are p == (n — 1)~ terms in the expansion, then 1 is
asymptotically of order (log#)>. However. a univariate expansion with p
terms has a Lebesgue constant A,_; of order log[(n — I)¥ — 1], which is
essentially N log n and thus significantly smaller than /A for large » (and
N > 1).

3. L. APPROXIMATION BY CHEBYSHEV INTERPOLATION

Let I denote the projection of a continuous function f(xy,..., Xy) over
H# = [—1, 1]V on the polynomial of degrees #, ,..., ny which interpolates f
in the tensor product {(x,,..., xy)] of all possible combinations of points
chosen from
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vy 4 o 00 )
v A (7, - 0. 1. )
Yy Ny (iv O.l....ny)

Then

I = Z‘ '{2/;}’(\1) ) P ), (16)
=0 im0
where
( b}

(1)
[7(x) = (
1—1 \(z) Y”')

Ilb

From (16),

n]

o< s (H /(’)(\’,))

l 70 1\71

Hence

s sup H(Z 7)) - (17)

The bound (17) is attained (compare the univariate case) when f'is chosen of
norm unity such that

FOa e w8y = sl 200 - £ ),

where x;7° is the point of attainment of

sup Z WALED)

X
)=

Thus

[, = sup HZ £9x)). . (18)

"""" N =1 =0

Taking {x!"”} to be the zeros of T, lx)) for j — 1

..... N, and using the
definition (4) of v, ., (18) becomes

[ . = 1(ng, ns,....05). (19
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where
N )N X
I'=[]yn,~(=) [logn, (20)
=1 i=1

by (7). Thus Ifis a near-best L,, approximation by a relative distance I" of the
same order of magnitude [ log n; as 4 in Section 2 above. Once again we
have a practical near-best approximatoin for modest dimensions of variables
and degrees of polynomials.

4, CONVERGENCE IN L.,

Each of the projections F, G, and I considered in Sections 2 and 3, when
applied to a continuous function f, produces an approximation f* which
(by (1)) satisfies

[f—f*e<U+plIf— B, (21)
where
.
P = ClHIOgn)'a
j=1

C, is a constant independent of fand #; , and fB is a best L,, approximation.
Now if a “partial modulus of continuity” is defined for each component of f
as

W, (1) = Sup | (X1 ey X pees Xn) — FO perey X ey X0

ix —XTUSt
1 7

then it is known (see [7]) that

B 3 1
If=F1e <G % o () (22)
where C, is a constant independent of fand #; .
Combining (21) and (22), and taking &; = (n; -~ 1)7%, we deduce the
following result:

TueorReM 4.1. If f satisfies a Lipschitz condition of the form
N N
Z UJ]'(SJ') : 1—[ log 81' > 0 as {8)} -— 0 (23)
=1 j=1
then the multivariate Fourier series of f, the multivariate Chebyshev series of f,
and the multivariate polynomial interpolating f at a tensor product of Chebyshev
zeros all converge in L. to [ as {n;} — . (In the case of the Fourier series,
S must also be periodic for convergence on the whole hypercube.)

640/28/4-5
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This 1s slightly weaker than the corresponding theorem for univariate
approximation, which involves the Dini-Lipschitz condition

w(d) log 8 — 0.
For if 8, = 6 and w(8) = w(d) for all j, then (23) becomes
Now(d)(log 8)N — 0,

and so each partial modulus of continuity in the multivariate case has to have
the size of the Nth power of the modulus of continuity required in the
univariate case.

For Fourier and Chebyshev series, it is also well known that a sufficient
condition for L, convergence in the univariate case is that f should be
continuous and of bounded variation. However. this result does not appear
to generalise conveniently to the multivariate case. Results for two variables
are given for the Fourier series in [8] and extended to the Chebyshev series
in [9]. But, in addition to a suitable bivariate bounded variation requirement,
these theorems also require that a partial derivative of f should be bounded.

5. L, APPROXIMATION BY FOURIER AND CHEBYSHEV SERIES

From (8), the partial sum of the Fourier series of degrees #, ,..., #y of an
L,-integrable (periodic) function f(xy ..... Xy) satisfies

. LY . - Yosin(n; — 4) ¢t
Ef = (77—7" J#?vj(,\l 1y ey X f_\') E Wdtl dtN .

Hence
: S I e sini; — )t ],
£ty == ‘ P J‘#?\' lJ”?v.f(»\’L + 1,01 T anl, dn, dx,
! | sin(i; — 1) ¢;
(2—,_' [| fG =1, ):[‘[: Sl = idty e dxy
| iosin(n, — 4t
= 27 Jy 1 sin ety
Thus
N
L1y < T Ay, = Al ey i1y) (24)

from (2) and (12) above.
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Hence Ff is a near-best L, approximation within a relative distance of the
order of []logn;, and it is a practical near-best approximation for modest
values of N and n; .

Let H = Hln, . n,,..., nx] denote the projection of a function on the partial
sum of degrees #, ,..., ny of its Chebyshev series of the second kind. Suppose
the function A(x,, x5 ,..., xy) is L;-integrable on 5% , then the function

f(B,.0,,....0y) = sin B, sin §, -+ sin By - h(cos b, ..., cos By)  (25)

is periodic and L,-integrable on 5#,°. Hence, from (24),
VEfy < fn Alny ... ny). (26)
Since f is odd in 6,,.., 8y, it follows that Ff only has terms in

sin k.0, sin ko0, -+ sin ky0y . But the Chebyshev polynomial of the second
kind satisfies

sin 6, - Uy (x;) = sin(k; + D 0, where x; = cos 6, ,

and hence it follows that

Ff=sin0; - sin 8y - Hln, — 1,..., iy — 1]A. (27)
Now
gy = 2V [ | (B ..., Oy) dby - dby
Y[0.:1¥
9N [ i A(xy ... xy) sin @ -+~ sin 0 d8, -+ dB
10,7
= 2N [ | Axy ooy X)) dxy oo dxy
YN
Thus

W =2V ki (28)
Similarly, from (27) it follows that
| Ffi, =25 H[m — L., ny — 1)1|,, (29)
and from (26), (28), and (29) we deduce that
H| < Ay + 1, n, + 1., ny + 1)

Hence Hh is a near-best L, approximation within a relative distance
A(n, + 1...., ny + 1), which is of course again of the order of I'f logn, .
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6. CONVERGENCE IN L;

If the function f(x,,..., xy) is assumed to be square integrable on ",
then Ff converges in L, to f as a consequence of the orthogonality of the
Fourier series (via the multivariate form of Bessel's inequality and the
Riesz-Fischer theorem). Since L, is a stronger norm than L, , it immediately
follows that Ff converges in L, to fas n} — «.

Now if A(x; ...., Xy) Is square integrable on J# , then the function

f(0;,.... 0y) =sin 6, --- sin Oy - h(cos 8, ,..., cos Oy)
is also square integrable and (compare (28) and (29))
| f—Ffy =2 Vh— Hny — 1,..,ny — 1] .

Since Ff converges to fin L, , it follows that HA converges to 4 in L, . Thus
for any square integrable function the Chebyshev series of the second kind
converges in L, .
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