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A set of results concerning goodness of approximation and convergence in
norm is given for Loo and L 1 approximation of multivariate functions on hyper
cubes. Firstly the trigonometric polynomial formed by taking a partial sum of a
multivariate Fourier series and the algebraic polynomials formed either by
taking a partial sum of a multivariate Chebyshev series of the first kind or by
interpolating at a tensor product of Chebyshev polynomial zeros are all shown
to be near-best L",. approximations. Secondly the trigonometric and algebraic
polynomials formed by taking, respectively, a partial sum of a multivariate
Fourier series and a partial sum of a multivariate Chebyshev series of the second
kind are both shown to be hear-best L 1 approximations. In all the cases con
sidered, the relative distance of a near-best approximation from a corresponding
best approximation is shown to be at most of the order of II log n, , where n,
(j = I, 2,..., N) are the respective degrees of approximation in the N individual
variables. Moreover, convergence in the relevant norm is established for all
the sequences of near-best approximations under consideration, subject to
appropriate restrictions on the function space.

1. INTRODUCTION

IfI is an element of a normed linear function space X, and f * is an element
of a subspace Y, then f* is a near-best approximation to I within a relative
distance p (see [1]) if

III - f* I~ ~ (1 + p)!I -- fB :i, (1)

wherefB is a best approximation in Ytof In casef* is formed from/by a
projection P of X into Y, then

nl - f* [I = III - Pp! :s:;; (l + Ii P:I) III - fB i!
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(see [2]). and \\e ha\(: a realization of (I) \\ ith

p P.

Thus PI is near-best within a relative distance i P .

More specifically. a near-best approximation is termed practical If p is
acceptably small (see [3]). and in particular if p . 9 then no more than one
decimal place of accuracy is lost in taking fX in place off B In the case of a
projection P. we must show that I P is acceptably small.

Practical near-best approximations have been established by projection
methods for univariate approximation in both the C and L 1 norms. Suppose
that F" denotes the projection on the partial sum of degree /I of the Fourier
series. G" and H" denote the projections on the partial sums of degree /I of
the Chebyshev series of first and second kinds. respectively. and I,. denotes
the projection on the polynomial of degree /I that interpolates in the zeros
of the Chebyshev polynomial T, I(X). Then. for continuous functions. it is
well knO\vn (see [2.4. 5]) that

and

F" ;" - 1\"
sin (/I -- J) x ,

. I !Ix
Sill ~x

10 ' -=.=- Ylt
I .; (2i -'- I)"--- 2... cot-~-- .

/I -- I ,~U 4(11- I)
(3)

And for absolutely integrable functions it has been shown (see [6]) that

F'.'I '\'1
and

fill I '\"-1

Here '\11 is the classical Lebesgue constant. and )'" is derived from the relation

where

"I
/11 max I I,(x).

x
/=-()

(4)

(5)

and ':XI;: are the zeros of TII~l(X).

The constants ,\" and Yn are known (see [4, 5]) to have asymptotic
behaviours

4
A" -- -., log /I':" O( I)

rr-
(6)



and
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2 ,
Yn = -log fl --;- 0(1),

7T
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(7)

and both increase so slowly with fl that they do not exceed 3 for fl up to 20.
It follows that F" . Gil , and III yield practical near-best Lr; approximations,
and F" and H" yield practical near-best LI approximations.

The convergence in norm of these univariate approximations is discussed
in [I]. In the C norm, converges (as fl ---+ oc) of F,,! G,,! and Infis well
known if fis Dini-Lipschitz continuous (or alternatively. in the case of F,,!
and G,f continuous and of bounded variation). And in the L I norm,
convergence of F,,! and H,,! has been established iff is square integrable.

All the above results will now be generalized to multivariate functions on
hypercubes.

2. L", ApPROXIMATION BY FOCRIER AND CHEBYSHEV SERIES

Let F denote the projection of a multivariate continuous periodic function
f of N variables Xl • X 2 •... , Xx over the hypercube

on the partial sum of orders n i , Il~ , ...• n.v in Xl , X~ •...• Xx • respectively, of
its Fourier series expansion. Then it is easily seen that

Ff~·

where

n,'I,j

I
1•.",,=-11,\

It follows that

"I e-;("l(lIl-"'l)~'''- ,:",{II,V-""'))

""'~-,,.\" X dU
I

... du.,;

( I ')N
J
" f( , )'" -,(k11'-"'+':V'V)d I

... - O' x I ·:-. t I , ...• X y ..- t y L e '. t I ··• (t y,,27T .:ff,v
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Thus

. IS. .
Fj -- h-=-) I. j(Xl

.... /1 .. •.if ~\

.I. C. \1'\50:\

Taking norms and using the definition (2) of the Lebesgue constant ,\" ' we
obtain

~

Fl"> ''-,!.f x . TI A"
/'"""""1

(91

The bound (9) is clearly attained (compare the univariate case) by takingf
arbitrarily close to the function

Hence

Y sin (II; -- })Xj
sgn TI . I.

,'~I SIn ~'\i

( 10)

where

(II)

( 12)

from (6). It follows from Section I above that the Fourier partial sum Ff
is a near-best C approximation within a relative distance A of the order of
Illog fl,.

A similar result may be obtained for the Chebyshev series expansion of a
nonperiodic function as follows. If g(x1 • X~ , ...• xv) is continuous on the
hypercube

:Yf\. ',~ [-1.1]-' = :-1 ·.Xl'X~,,,,,x,\ <;' I:.

then the related function

(13)

is continuous and periodic on £'vo. Hence, from (9) above.

(14)

This bound is attained. because the function (10) is an even periodic function
of the form (13) with g arbitrarily close to a continuous function. Since f is
even in 81 • 82 .... , 8y • it follows that Ffonly has terms in cos k181 . cos k 282 ...

cos k.\8.\. . But the Chebyshev polynomial T.I/xi) of the first kind satisfies

T:. (X;) = cos k j 8i '



and hence
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Ff= Gg,
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(15)

where G denotes the projection on the partial sum of degrees Ill"'" fly in
Xl"'" XN of the Chebyshev series expansion of the first kind.

Since the bound (14) is attained, it follows from (11), ([3), (14), and (15)
that

Thus the Chebyshev series partial sum is also a near-best Lx approximation
within a relative distance .11(111 , ... ,11.\"), given by (12), of the order ofn log I1j •

From a practical point of view these results are comparable with those for
univariate functions (N = 1) for modest dimensions of variables and degrees
of polynomials. For example, ./1 is less than 9 (a loss of at most one significant
figure) for

N= 2

N = 3

N=4

and

and

and

III = 112 == 113 :s; 6,

III = ... == I1 J :s; 2.

If a relative distance /1 of 99 is acceptable, which corresponds to a loss of at
most two singificant figures from the best approximation, then this is
achieved for

N=4

N = 5

N=6

and

and

and

III = = I1J ,~c:: 100,

III = = 11;; ~ 20,

III = = 116 :s; 8.

Of course, the comparison with the univariate case is not so favourable for
larger numbers of variables and higher degrees. Specifically, if III = ... =

I1s = 11, say, so that there are p == (11 --, I)'v terms in the expansion, then 11 is
asymptotically of order (log 11)'\'. However. a univariate expansion with p

terms has a Lebesgue constant '\"-1 of order [og[(11 ~ I)"" - I], which is
essentially IV log 11 and thus significantly smaller than A for large 11 (and
IV> I).

3. Lx ApPROXI'>IATION BY CHEBYSHEV INTERPOLATIO,,"

Let I denote the projection of a continuous function f(x1 , ... , )(v) over
:Yt'.\, = [-1, 1]-" on the polynomial of degrees III , ... , lls \vhich interpolates f
in the tensor product {(Xl ,... , Xx») of all possible combinations of points
chosen from
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(i~ O. I. .... II~).

(i,,- O. I. .... II,).

Then

f/1

f/= I
I l =0

(16)

where

From (16),

Hence

( 17)It ·f t r XIS.~PX\ 01 (~o /}JI(XJ:).

The bound (17) is attained (compare the univariate case) whenfis chosen of
norm unity such that

where xj is the point of attainment of

Thus

( 18)

Taking P.-;")l to be the zeros of Tf/+!(x)) for i -~ 1.. .. , N, and using the
definition (4) of y" , (18) becomes '

I (19)



where
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(20)

by (7). Thus Ifis a near-best L" approximation by a relative distance r of the
same order of magnitude n log ni as .Ii in Section 2 above. Once again we
have a practical near-best approximatoin for modest dimensions of variables
and degrees of polynomials.

4. CONVERGENCE IN L oo

Each of the projections F, G, and I considered in Sections 2 and 3, when
applied to a continuous function f, produces an approximation f* which
(by (l» satisfies

(21)

where
.".

p = C1 n log 11 i ,
i~l

C1 is a constant independent offand ni , and fB is a best Lor; approximation.
Now if a "partial modulus of continuity" is defined for each component off
as

wlt) = sup I f(x1 '00" Xi ,... , XN) - f(X1 , ... , xi, .. ·, xN)1 ,
ix.-x:. ~t

] )

then it is known (see [7]) that

Ii! - fB I'x; :(: C2 £w; (-. ~ 1 ) , (22)
i~l fl"

where C2 is a constant independent off and n,. .
Combining (21) and (22), and taking 0; == (ni -"- 1)-1, we deduce the

following result:

THEOREM. 4.1. Iff satisfies a Lipschitz condition of the form

N IV

I w;(o;) . nlog 0; ->- 0
i~l i~l

(23)

then the multivariate Fourier series off, the multivariate Chebyshev series off,
and the multivariate polynomial interpolatingf at a tensor product ofChebyshev
zeros all converge in Lx to f as {n,.} ->- 'XJ. (In the case of the Fourier series,
f must also be periodic for com'ergence on the whole hypercube.)
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, dt
1

'" dX
1

...
!

Thi~ i~ ~lightly \\ eaker than the corresponding theorem for univariate
approximation, \\hich involves the Dini-Lipschitz condition

w(8) log 8 ---+ O.

For if 8J ~= 8 and wJ(b) = w(b) for allj, then (23) becomes

Nw(o)(log o).\" ->- 0,

and so each partial modulus of continuity in the multivariate case has to have
the size of the Nth power of the modulus of continuity required in the
univariate case.

For Fourier and Chebyshev series, it is also well known that a sufficient
condition for L" convergence in the univariate case is that f should be
continuous and of bounded variation. However. this result does not appear
to generalise conveniently to the multivariate case. Results for two variables
are given for the Fourier series in [8] and extended to the Chebyshev series
in [9]. But, in addition to a suitable bivariate bounded variation requirement,
these theorems also require that a partial derivative off should be bounded.

5. L1 ApPROXIMATlO:-l BY FOCRIER A~D CHEBYSHEV SERIES

From (8), the partial sum of the Fourier series of degrees Ill"'" liN of an
Lcintegrable (periodic) function /(x 1 ..... xs) satisfies

Hence

,. I )s,' I,' n sin(lIj -- i) f j did'F.f 1 == -2 I ,{(XI -:- f 1 , ••• ,) -'-'·'--------1~ f 1 '" '\1'"
o sin -._,f]·. 7'1'. 'ff\ ':If""

,,' I_I IS ,',' t'(' --:- ), n i sin(l1j- ~) f j

.' \ 2- .' '\1 fl·· .. • ~ .' l
II "'~ I sin '21/

. n I l·b i sin(l1, -~) f j I I
~ f 1 - \ !' t).

. 2r. "0 I sin ~ti i

Thus
IV

!Fi 1 ::::;; nAnj = /1(/11 , ... , Il N )

1=1

from (2) and (12) above.

(24)
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Hence Ff is a near-best L1 approximation within a relative distance of the
order of TI log nj , and it is a practical near-best approximation for modest
values of Nand nj .

Let H =, H[n1 ' n2 , •.• , n:v] denote the projection of a function on the partial
sum of degrees n l , ... , nN of its Chebyshev series of the second kind. Suppose
the function h(x l , X 2 , ... , xv) is Lcintegrable on :Yf'v, then the function

fUJI' B2 , .••• B.\') = sin Bl sin B2 ••• sin By' h(cos B1 , .... cos B\,) (25)

is periodic and Lcintegrable on £\.0. Hence. from (24).

(26)

Since f is odd in B1 , ... , B,y, it follows that Ff only has terms in
sin k 1B1 sin k 2B2 ... sin k,,,BN • But the Chebyshev polynomial of the second
kind satisfies

sin B) . U,J\j) = sin(k j + I) Bj ,

and hence it follows that

where Xj = cos Bj ,

Ff = sin BI ... sin B.v • H[n l - I, ... , II,\' - 1]17.

Now

= 2·" r .i h(x1 , .... xx) sin Bl ... sin Bg dB] ... dB,
'lO."I"

Thus

Similarly, from (27) it follows that

and from (26), (28), and (29) we deduce that

Ii HI!l ~ A(n1 + 1, n2 + 1,... , ny + 1).

(27)

(28)

(29)

Hence Hh is a near-best LI approximation within a relative distance
A(n , --l-- I.... , nv + 1). which is of course again of the order of TI log nj .
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6. CO~VERGE~CE [~ L[

If the function f(x1 , .•. , xv) is assumed to be square integrable on £\1),
then Ff converges in L 2 to f as a consequence of the orthogonality of the
Fourier series (via the multivariate form of Bessel's inequality and the
Riesz-Fischer theorem). Since L2 is a stronger norm than I[ , it immediately
follows that Ffconverges in I[ tofas ;n,} ---+ 'X.

Now if h(x[ .... , xx) is square integrable on Y(y , then the function

f(B[ ,.... B.y) = sin B1 ... sin B,v . h(cos B[ ,... , cos BN )

is also square integrable and (compare (28) and (29»

! f - Ff,:[ = 2v I h - H[n1 - 1'00" nN - l]h "[.

Since Ff converges to f in 1,[ , it follows that Hh converges to h in I[ . Thus
for any square integrable function the Chebyshev series of the second kind
converges in I[ .
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